NIST AI Risk Management Framework
HomeDocumentationGet started
  • NIST AI Risk Management Framework
  • GRN 1: Risk Management Documentation
    • GRN 1.1 - AI Legal and Regulatory Requirements
    • GRN 1.2 - Trustworthy AI Characteristics
    • GRN 1.3 - Transparent Risk Management
    • GRN 1.4 - Risk Management Monitoring
  • GRN 2: AI Organisation Structure
    • GRN 2.1 - Roles and Responsibilities
    • GRN 2.2 - AI Risk Management Training
    • GRN 2.3 - Executive Responsibility
  • GRN 3: AI Internal Stakeholders
    • GRN 3.1 - AI Risk Decisions Making
  • GRN 4: Organisational Commitments
    • GRN 4.1 - AI Risk Organisational Practices
    • GRN 4.2 - AI Organisational Documentation
    • GRN 4.3 - Organisational Information Sharing Mechnism
  • GRN 5: Stakeholder Engagement
    • GRN 5.1 - External Stakeholder Policies
    • GRN 5.2 - Stakeholder Feedback Integration
  • GRN 6: Managing 3rd-Party Risk
    • GRN 6.1 - 3rd Party Risk Policies
    • GRN 6.2 - 3rd Party Contingency
  • MAP 1: AI Application Context
    • MAP 1.1 - Intended Purpose of AI Use
    • MAP 1.2 - Inter-disciplinary AI Stakeholders
    • MAP 1.3 - AI's Business Value
    • MAP 1.4 - Organisations AI Mission
    • MAP 1.5 - Organisations Risk Tolerance
    • MAP 1.6 - Stakeholder Engagements
    • MAP 1.7 - AI System Requirements
  • MAP 2: AI Application Classification
    • MAP 2.1 - AI Classification
    • MAP 2.2 - AI Usage by Humans
    • MAP 2.3 - TEVV Documentation
  • MAP 3: AI Benefits and Costs
    • MAP 3.1 - AI System Benefits
    • MAP 3.2 - AI Potential Costs
    • MAP 3.3 - AI Application Scope
  • MAP 4: 3rd-Party Risks and Benefits
    • MAP 4.1 - Mapping 3rd-Party Risk
    • MAP 4.2 - Internal Risk Controls for 3rd Party Risk
  • MAP 5: AI Impacts
    • MAP 5.1 - AI Positive or Negative Impacts
    • MAP 5.2 - Likelihood and Magnitude of Each Impact
    • MAP 5.3 - Benefits vs Impacts
  • MRE 1: Appropriate Methods and Metrics
    • MRE 1.1 - Approaches and Metrics
    • MRE 1.2 - Metrics Appropriateness and Effectiveness
    • MRE 1.3 - Stakeholder Assessment Consultation
  • MRE 2: Trustworthy Evaluation
    • MRE 2.1 - Tools for TEVV
    • MRE 2.2 - Evaluations of Human Subjects
    • MRE 2.3 - System Performance
    • MRE 2.4 - Deployment Valid and Reliable
    • MRE 2.5 - Regular Evaluation of AI Systems
    • MRE 2.6 - Evaluation of Computational Bias
    • MRE 2.7 - Evaluation of Security and Resilience
    • MRE 2.8 - Evaluation of AI Models
    • MRE 2.9 - Evaluation of AI Privacy Risks
    • MRE 2.10 - Environmental Impact
  • MRE 3: Risk Tracking Mechanism
    • MRE 3.1 - Risk Tracking and Management
    • MRE 3.2 - Risk Tracking Assessments
  • MRE 4: Measurement Feedback
    • MRE 4.1 - Measurement Approaches for Identifying Risk
    • MRE 4.2 - Measurement Approaches for Trustworthiness
    • MRE 4.3 - Measurable Performance Improvements
  • MGE 1: Managing AI Risk
    • MGE 1.1 - Development and Deployment Decision
    • MGE 1.2 - Risk Mitigation Activities
    • MGE 1.3 - Risk Management of Mapped Risks
  • MGE 2: Managing AI Benefits and Impacts
    • MGE 2.1 - Allocated Resources for Risk Management
    • MGE 2.2 - Sustained Value Mechanism
    • MGE 2.3 - AI Deactivation Mechanism
  • MGE 3: Managing 3rd-Party Risk
    • MGE 3.1 - 3rd Party Risk are Managed
  • MGE 4: Reporting Risk Management
    • MGE 4.1 - Post-Deployment Risk Management
    • MGE 4.2 - Measurable Continuous Improvements
Powered by GitBook
On this page
  1. MAP 1: AI Application Context

MAP 1.2 - Inter-disciplinary AI Stakeholders

NIST AI RMF (in the playbook companion) states:

MAP 1.2

Inter-disciplinary AI actors, competencies, skills and capacities for establishing context reflect demographic diversity and broad domain and user experience expertise, and their participation is documented. Opportunities for interdisciplinary collaboration are prioritized.

About

Successfully mapping context requires a team of AI actors with a diversity of experience, expertise, abilities and backgrounds, and with the resources and independence to engage in critical inquiry.

Having a diverse team contributes to more open sharing of ideas and assumptions about the purpose and function of the technology being designed and developed – making these implicit aspects more explicit. The benefit of a diverse staff in managing AI risks is not the beliefs or presumed beliefs of individual workers, but the behavior that results from a collective perspective. An environment which fosters critical inquiry creates opportunities to surface problems and identify existing and emergent risks.

Actions
  • Establish interdisciplinary teams to reflect a wide range of skills, competencies, and capacity for AI efforts. Verify that team membership includes both demographic diversity, broad domain expertise, and lived experiences. Document team composition.

  • Create and empower interdisciplinary expert teams to capture, learn, and engage the interdependencies of deployed AI systems and related terminologies and concepts from disciplines outside of AI practice such as law, sociology, psychology, anthropology, public policy, systems design, and engineering.

Transparency and Documentation

Organizations can document the following:

  • To what extent do the teams responsible for developing and maintaining the AI system reflect diverse opinions, backgrounds, experiences, and perspectives?

  • Did the entity document the demographics of those involved in the design and development of the AI system to capture and communicate potential biases inherent to the development process, according to forum participants?

  • What specific perspectives did stakeholders share, and how were they integrated across the design, development, deployment, assessment, and monitoring of the AI system?

  • To what extent has the entity addressed stakeholder perspectives on the potential negative impacts of the AI system on end users and impacted populations?

  • What type of information is accessible on the design, operations, and limitations of the AI system to external stakeholders, including end users, consumers, regulators, and individuals impacted by use of the AI system?

  • Did your organization address usability problems and test whether user interfaces served their intended purposes? Consulting the community or end users at the earliest stages of development to ensure there is transparency on the technology used and how it is deployed.

PreviousMAP 1.1 - Intended Purpose of AI UseNextMAP 1.3 - AI's Business Value

Last updated 2 years ago