NIST AI Risk Management Framework
HomeDocumentationGet started
  • NIST AI Risk Management Framework
  • GRN 1: Risk Management Documentation
    • GRN 1.1 - AI Legal and Regulatory Requirements
    • GRN 1.2 - Trustworthy AI Characteristics
    • GRN 1.3 - Transparent Risk Management
    • GRN 1.4 - Risk Management Monitoring
  • GRN 2: AI Organisation Structure
    • GRN 2.1 - Roles and Responsibilities
    • GRN 2.2 - AI Risk Management Training
    • GRN 2.3 - Executive Responsibility
  • GRN 3: AI Internal Stakeholders
    • GRN 3.1 - AI Risk Decisions Making
  • GRN 4: Organisational Commitments
    • GRN 4.1 - AI Risk Organisational Practices
    • GRN 4.2 - AI Organisational Documentation
    • GRN 4.3 - Organisational Information Sharing Mechnism
  • GRN 5: Stakeholder Engagement
    • GRN 5.1 - External Stakeholder Policies
    • GRN 5.2 - Stakeholder Feedback Integration
  • GRN 6: Managing 3rd-Party Risk
    • GRN 6.1 - 3rd Party Risk Policies
    • GRN 6.2 - 3rd Party Contingency
  • MAP 1: AI Application Context
    • MAP 1.1 - Intended Purpose of AI Use
    • MAP 1.2 - Inter-disciplinary AI Stakeholders
    • MAP 1.3 - AI's Business Value
    • MAP 1.4 - Organisations AI Mission
    • MAP 1.5 - Organisations Risk Tolerance
    • MAP 1.6 - Stakeholder Engagements
    • MAP 1.7 - AI System Requirements
  • MAP 2: AI Application Classification
    • MAP 2.1 - AI Classification
    • MAP 2.2 - AI Usage by Humans
    • MAP 2.3 - TEVV Documentation
  • MAP 3: AI Benefits and Costs
    • MAP 3.1 - AI System Benefits
    • MAP 3.2 - AI Potential Costs
    • MAP 3.3 - AI Application Scope
  • MAP 4: 3rd-Party Risks and Benefits
    • MAP 4.1 - Mapping 3rd-Party Risk
    • MAP 4.2 - Internal Risk Controls for 3rd Party Risk
  • MAP 5: AI Impacts
    • MAP 5.1 - AI Positive or Negative Impacts
    • MAP 5.2 - Likelihood and Magnitude of Each Impact
    • MAP 5.3 - Benefits vs Impacts
  • MRE 1: Appropriate Methods and Metrics
    • MRE 1.1 - Approaches and Metrics
    • MRE 1.2 - Metrics Appropriateness and Effectiveness
    • MRE 1.3 - Stakeholder Assessment Consultation
  • MRE 2: Trustworthy Evaluation
    • MRE 2.1 - Tools for TEVV
    • MRE 2.2 - Evaluations of Human Subjects
    • MRE 2.3 - System Performance
    • MRE 2.4 - Deployment Valid and Reliable
    • MRE 2.5 - Regular Evaluation of AI Systems
    • MRE 2.6 - Evaluation of Computational Bias
    • MRE 2.7 - Evaluation of Security and Resilience
    • MRE 2.8 - Evaluation of AI Models
    • MRE 2.9 - Evaluation of AI Privacy Risks
    • MRE 2.10 - Environmental Impact
  • MRE 3: Risk Tracking Mechanism
    • MRE 3.1 - Risk Tracking and Management
    • MRE 3.2 - Risk Tracking Assessments
  • MRE 4: Measurement Feedback
    • MRE 4.1 - Measurement Approaches for Identifying Risk
    • MRE 4.2 - Measurement Approaches for Trustworthiness
    • MRE 4.3 - Measurable Performance Improvements
  • MGE 1: Managing AI Risk
    • MGE 1.1 - Development and Deployment Decision
    • MGE 1.2 - Risk Mitigation Activities
    • MGE 1.3 - Risk Management of Mapped Risks
  • MGE 2: Managing AI Benefits and Impacts
    • MGE 2.1 - Allocated Resources for Risk Management
    • MGE 2.2 - Sustained Value Mechanism
    • MGE 2.3 - AI Deactivation Mechanism
  • MGE 3: Managing 3rd-Party Risk
    • MGE 3.1 - 3rd Party Risk are Managed
  • MGE 4: Reporting Risk Management
    • MGE 4.1 - Post-Deployment Risk Management
    • MGE 4.2 - Measurable Continuous Improvements
Powered by GitBook
On this page
  1. MAP 1: AI Application Context

MAP 1.3 - AI's Business Value

NIST AI RMF (in the playbook companion) states:

MAP 1.3

The business value or context of business use has been clearly defined or – in the case of assessing existing AI systems – re-evaluated.

About

AI systems should present a business benefit beyond the status quo when considering inherent risks and implicit or explicit costs. Defining and documenting the specific business purpose of an AI system in a broader context of societal values helps teams to evaluate risks and increases the clarity of “go/no-go” decisions about whether to deploy.

Actions
  • Build transparent practices into AI system development processes.

  • Review the documented system purpose from a socio-technical perspective and in consideration of societal values.

  • Determine possible misalignment between societal values and stated organizational principles and code of ethics.

  • Flag latent incentives that may contribute to negative impacts.

  • Balance AI system purpose with potential risks, societal values, and stated organizational principles.

Transparency and Documentation

Organizations can document the following:

  • How does the AI system help the entity meet its goals and objectives?

  • How do the technical specifications and requirements align with the AI system’s goals and objectives?

  • To what extent is the output appropriate for the operational context?

PreviousMAP 1.2 - Inter-disciplinary AI StakeholdersNextMAP 1.4 - Organisations AI Mission

Last updated 2 years ago