NIST AI Risk Management Framework
HomeDocumentationGet started
  • NIST AI Risk Management Framework
  • GRN 1: Risk Management Documentation
    • GRN 1.1 - AI Legal and Regulatory Requirements
    • GRN 1.2 - Trustworthy AI Characteristics
    • GRN 1.3 - Transparent Risk Management
    • GRN 1.4 - Risk Management Monitoring
  • GRN 2: AI Organisation Structure
    • GRN 2.1 - Roles and Responsibilities
    • GRN 2.2 - AI Risk Management Training
    • GRN 2.3 - Executive Responsibility
  • GRN 3: AI Internal Stakeholders
    • GRN 3.1 - AI Risk Decisions Making
  • GRN 4: Organisational Commitments
    • GRN 4.1 - AI Risk Organisational Practices
    • GRN 4.2 - AI Organisational Documentation
    • GRN 4.3 - Organisational Information Sharing Mechnism
  • GRN 5: Stakeholder Engagement
    • GRN 5.1 - External Stakeholder Policies
    • GRN 5.2 - Stakeholder Feedback Integration
  • GRN 6: Managing 3rd-Party Risk
    • GRN 6.1 - 3rd Party Risk Policies
    • GRN 6.2 - 3rd Party Contingency
  • MAP 1: AI Application Context
    • MAP 1.1 - Intended Purpose of AI Use
    • MAP 1.2 - Inter-disciplinary AI Stakeholders
    • MAP 1.3 - AI's Business Value
    • MAP 1.4 - Organisations AI Mission
    • MAP 1.5 - Organisations Risk Tolerance
    • MAP 1.6 - Stakeholder Engagements
    • MAP 1.7 - AI System Requirements
  • MAP 2: AI Application Classification
    • MAP 2.1 - AI Classification
    • MAP 2.2 - AI Usage by Humans
    • MAP 2.3 - TEVV Documentation
  • MAP 3: AI Benefits and Costs
    • MAP 3.1 - AI System Benefits
    • MAP 3.2 - AI Potential Costs
    • MAP 3.3 - AI Application Scope
  • MAP 4: 3rd-Party Risks and Benefits
    • MAP 4.1 - Mapping 3rd-Party Risk
    • MAP 4.2 - Internal Risk Controls for 3rd Party Risk
  • MAP 5: AI Impacts
    • MAP 5.1 - AI Positive or Negative Impacts
    • MAP 5.2 - Likelihood and Magnitude of Each Impact
    • MAP 5.3 - Benefits vs Impacts
  • MRE 1: Appropriate Methods and Metrics
    • MRE 1.1 - Approaches and Metrics
    • MRE 1.2 - Metrics Appropriateness and Effectiveness
    • MRE 1.3 - Stakeholder Assessment Consultation
  • MRE 2: Trustworthy Evaluation
    • MRE 2.1 - Tools for TEVV
    • MRE 2.2 - Evaluations of Human Subjects
    • MRE 2.3 - System Performance
    • MRE 2.4 - Deployment Valid and Reliable
    • MRE 2.5 - Regular Evaluation of AI Systems
    • MRE 2.6 - Evaluation of Computational Bias
    • MRE 2.7 - Evaluation of Security and Resilience
    • MRE 2.8 - Evaluation of AI Models
    • MRE 2.9 - Evaluation of AI Privacy Risks
    • MRE 2.10 - Environmental Impact
  • MRE 3: Risk Tracking Mechanism
    • MRE 3.1 - Risk Tracking and Management
    • MRE 3.2 - Risk Tracking Assessments
  • MRE 4: Measurement Feedback
    • MRE 4.1 - Measurement Approaches for Identifying Risk
    • MRE 4.2 - Measurement Approaches for Trustworthiness
    • MRE 4.3 - Measurable Performance Improvements
  • MGE 1: Managing AI Risk
    • MGE 1.1 - Development and Deployment Decision
    • MGE 1.2 - Risk Mitigation Activities
    • MGE 1.3 - Risk Management of Mapped Risks
  • MGE 2: Managing AI Benefits and Impacts
    • MGE 2.1 - Allocated Resources for Risk Management
    • MGE 2.2 - Sustained Value Mechanism
    • MGE 2.3 - AI Deactivation Mechanism
  • MGE 3: Managing 3rd-Party Risk
    • MGE 3.1 - 3rd Party Risk are Managed
  • MGE 4: Reporting Risk Management
    • MGE 4.1 - Post-Deployment Risk Management
    • MGE 4.2 - Measurable Continuous Improvements
Powered by GitBook
On this page
  1. GRN 2: AI Organisation Structure

GRN 2.2 - AI Risk Management Training

NIST AI RMF (in the playbook companion) states:

GOVERN 2.2

The organization’s personnel and partners are provided AI risk management training to enable them to perform their duties and responsibilities consistent with related policies, procedures, and agreements.

About

Through regular training, AI actors should maintain awareness of:

  • AI risk management goals and their role in achieving them.

  • Organizational policies, applicable laws and regulations, and industry best practices and norms.

Actions
  • Establish policies for personnel addressing ongoing education about:

    • Applicable laws and regulations for AI systems.

    • Negative impacts that may arise from AI systems.

    • Organizational AI policies.

    • Trustworthy AI characteristics.

  • Verify that organizational AI policies include mechanisms for internal AI personnel to acknowledge and commit to their roles and responsibilities.

  • Verify that organizational policies address change management and include mechanisms to communicate and acknowledge substantial AI system changes.

  • Define paths along internal and external chains of accountability to escalate risk concerns.

Transparency and Documentation

Organizations can document the following:

  • Are the relevant staff dealing with AI systems properly trained to interpret AI model output and decisions as well as to detect and manage bias in data?

  • How does the entity determine the necessary skills and experience needed to design, develop, deploy, assess, and monitor the AI system?

  • How does the entity assess whether personnel have the necessary skills, training, resources, and domain knowledge to fulfill their assigned responsibilities?

  • What efforts has the entity undertaken to recruit, develop, and retain a workforce with backgrounds, experience, and perspectives that reflect the community impacted by the AI system?

PreviousGRN 2.1 - Roles and ResponsibilitiesNextGRN 2.3 - Executive Responsibility

Last updated 2 years ago