NIST AI Risk Management Framework
HomeDocumentationGet started
  • NIST AI Risk Management Framework
  • GRN 1: Risk Management Documentation
    • GRN 1.1 - AI Legal and Regulatory Requirements
    • GRN 1.2 - Trustworthy AI Characteristics
    • GRN 1.3 - Transparent Risk Management
    • GRN 1.4 - Risk Management Monitoring
  • GRN 2: AI Organisation Structure
    • GRN 2.1 - Roles and Responsibilities
    • GRN 2.2 - AI Risk Management Training
    • GRN 2.3 - Executive Responsibility
  • GRN 3: AI Internal Stakeholders
    • GRN 3.1 - AI Risk Decisions Making
  • GRN 4: Organisational Commitments
    • GRN 4.1 - AI Risk Organisational Practices
    • GRN 4.2 - AI Organisational Documentation
    • GRN 4.3 - Organisational Information Sharing Mechnism
  • GRN 5: Stakeholder Engagement
    • GRN 5.1 - External Stakeholder Policies
    • GRN 5.2 - Stakeholder Feedback Integration
  • GRN 6: Managing 3rd-Party Risk
    • GRN 6.1 - 3rd Party Risk Policies
    • GRN 6.2 - 3rd Party Contingency
  • MAP 1: AI Application Context
    • MAP 1.1 - Intended Purpose of AI Use
    • MAP 1.2 - Inter-disciplinary AI Stakeholders
    • MAP 1.3 - AI's Business Value
    • MAP 1.4 - Organisations AI Mission
    • MAP 1.5 - Organisations Risk Tolerance
    • MAP 1.6 - Stakeholder Engagements
    • MAP 1.7 - AI System Requirements
  • MAP 2: AI Application Classification
    • MAP 2.1 - AI Classification
    • MAP 2.2 - AI Usage by Humans
    • MAP 2.3 - TEVV Documentation
  • MAP 3: AI Benefits and Costs
    • MAP 3.1 - AI System Benefits
    • MAP 3.2 - AI Potential Costs
    • MAP 3.3 - AI Application Scope
  • MAP 4: 3rd-Party Risks and Benefits
    • MAP 4.1 - Mapping 3rd-Party Risk
    • MAP 4.2 - Internal Risk Controls for 3rd Party Risk
  • MAP 5: AI Impacts
    • MAP 5.1 - AI Positive or Negative Impacts
    • MAP 5.2 - Likelihood and Magnitude of Each Impact
    • MAP 5.3 - Benefits vs Impacts
  • MRE 1: Appropriate Methods and Metrics
    • MRE 1.1 - Approaches and Metrics
    • MRE 1.2 - Metrics Appropriateness and Effectiveness
    • MRE 1.3 - Stakeholder Assessment Consultation
  • MRE 2: Trustworthy Evaluation
    • MRE 2.1 - Tools for TEVV
    • MRE 2.2 - Evaluations of Human Subjects
    • MRE 2.3 - System Performance
    • MRE 2.4 - Deployment Valid and Reliable
    • MRE 2.5 - Regular Evaluation of AI Systems
    • MRE 2.6 - Evaluation of Computational Bias
    • MRE 2.7 - Evaluation of Security and Resilience
    • MRE 2.8 - Evaluation of AI Models
    • MRE 2.9 - Evaluation of AI Privacy Risks
    • MRE 2.10 - Environmental Impact
  • MRE 3: Risk Tracking Mechanism
    • MRE 3.1 - Risk Tracking and Management
    • MRE 3.2 - Risk Tracking Assessments
  • MRE 4: Measurement Feedback
    • MRE 4.1 - Measurement Approaches for Identifying Risk
    • MRE 4.2 - Measurement Approaches for Trustworthiness
    • MRE 4.3 - Measurable Performance Improvements
  • MGE 1: Managing AI Risk
    • MGE 1.1 - Development and Deployment Decision
    • MGE 1.2 - Risk Mitigation Activities
    • MGE 1.3 - Risk Management of Mapped Risks
  • MGE 2: Managing AI Benefits and Impacts
    • MGE 2.1 - Allocated Resources for Risk Management
    • MGE 2.2 - Sustained Value Mechanism
    • MGE 2.3 - AI Deactivation Mechanism
  • MGE 3: Managing 3rd-Party Risk
    • MGE 3.1 - 3rd Party Risk are Managed
  • MGE 4: Reporting Risk Management
    • MGE 4.1 - Post-Deployment Risk Management
    • MGE 4.2 - Measurable Continuous Improvements
Powered by GitBook
On this page
  1. GRN 1: Risk Management Documentation

GRN 1.3 - Transparent Risk Management

NIST AI RMF (in the playbook companion) states:

GOVERN 1.3

The risk management process and its outcomes are established through transparent mechanisms and all significant risks are measured.

About

Clear policies and procedures are necessary to communicate roles and responsibilities for the Map, Measure and Manage functions across the AI lifecycle.

Standardized documentation can operationalize how organizational AI risk management processes are implemented and recorded. Systematizing documentation can also enhance accountability efforts. By adding their contact information to a work product document, AI actors can improve communication, increase ownership of work products, and potentially enhance consideration of product quality. Documentation may generate downstream benefits related to improved system replicability and robustness. Proper documentation storage and access procedures allow for quick retrieval of critical information during a negative incident.

Actions
  • Establish and regularly review documentation policies that address information related to:

    • AI actor contact information

    • Business justification

    • Scope and usage

    • Assumptions and limitations

    • Description of training data

    • Algorithmic methodology

    • Evaluated alternative approaches

    • Description of output data

    • Testing and validation results

    • Down- and up-stream dependencies

    • Plans for deployment, monitoring, and change management

    • Stakeholder engagement plans

  • Verify documentation policies for AI systems are standardized across the organization and up to date.

  • Establish policies for a model documentation inventory system and regularly review its completeness, usability, and efficacy.

  • Establish mechanisms to regularly review the efficacy of risk management processes.

  • Identify AI actors responsible for evaluating efficacy of risk management processes and approaches, and for course-correction based on results.

Transparency and Documentation

Organizations can document the following:

  • To what extent has the entity clarified the roles, responsibilities, and delegated authorities to relevant stakeholders?

  • What are the roles, responsibilities, and delegation of authorities of personnel involved in the design, development, deployment, assessment and monitoring of the AI system?

  • How will the appropriate performance metrics, such as accuracy, of the AI be monitored after the AI is deployed? How much distributional shift or model drift from baseline performance is acceptable?

PreviousGRN 1.2 - Trustworthy AI CharacteristicsNextGRN 1.4 - Risk Management Monitoring

Last updated 2 years ago